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Abstract. We present a cell renormalisation approach for the biased self-avoiding walks 
and show that a stiff-to-isotropic crossover exponent is exactly one in all dimensions and 
for all cell sizes. We also show, by use of renormalisation flow diagrams, a substantial 
difference between two and three dimensions in the crossover from stiff limit to isotropic 
limit as the length of walk N +a) for fixed gauche weight p. In three dimensions, a crossover 
seems to occur first to random walk limit and then to self-avoiding walk limit, while, in 
two dimensions, it seems to occur directly to self-avoiding walk limit in agreement with 
recent observations based on Monte Carlo simulations. 

In recent years there has been renewed interest in the conformation of semiflexible 
long chain polymers [ 1,2] both from theoretical [3-61 and experimental [3,4] points 
of view. In our recent Monte Carlo study [6] of such a chain, performed using the 
biased self-avoiding walk (BSAW) model [5 ] ,  we pointed out a dramatic difference in 
the effect of excluded volume between two and three dimensions in the vicinity of the 
extremely stiff limit. In this model p is the probability of taking a gauche step and N 
is the number of steps in the chain. A crossover from its one-dimensional limit to an 
isotropic flexible chain limit occurs as the product N’p is increased from N’p << 1 to 
N’p >> 1 where the index r$ serves the role of a crossover exponent. 

The purpose of this letter is two-fold. Firstly, by cell renormalisation we show the 
stiff-to-isotropic crossover exponent 4 to be exactly one in agreement with the numerical 
results [5 ,6] .  While the previous argument [5] for this result was based on a scaling 
assumption, the present work is based on renormalisation rather than an explicit scaling 
assumption. Secondly, we show a substantial dimensional difference between two and 
three dimensions and that in the ‘Flory’ limit of N + 00 with fixed p the chain eventually 
crosses over to the self-avoiding walk (SAW) limit as Np + CO by use of the renormalisa- 
tion flows. 

The dimensional difference referred to above results from the manner in which the 
isotropic limit Np >> 1 is probed. If p is held fixed, however small, and N + CO, then 
the resulting behaviour should be that of an ordinary SAW. On the other hand, if p + 0 
and N + CO with fixed Np = C and then C is increased, we should obtain an isotropic 
random walk (RW) behaviour in three dimensions while the SAW results are still obtained 
in two dimensions. Such a dimensional difference was already anticipated by Petscheck 
[7], and can be illustrated using a simple physical picture [6]. 

In our previous Monte Carlo study [6 ] ,  we have generally fixed p and varied N; 
however, a clear crossover from RW to the SAW limit was not observed in three 
dimensions (even for very large N in some cases). Nevertheless we concluded that 
such a crossover was about to take place based on the universality concept, as the 

0305-4470/87/070457 + 08$02.50 @ 1987 IOP Publishing Ltd L457 



L458 Letter to the Editor 

local slope of log(R2) against log N was beginning to show a marked deviation from 
its RW value for the largest values of N and for p = 0.2 and 0.3. 

The crossover from RW behaviour to SAW behaviour in this Flory limit was recently 
estimated [8] by a Flory-type approximation to occur at 

1. (1) ~ * ~ d / ( 4 - d )  - 
When d = 2 (1) predicts the Rw-to-sAw crossover to occur in the vicinity of the 
stiff-to-isotropic crossover, so that there is no isotropic RW regime in two dimensions. 
On the other hand, in three dimensions, N*  - p - 3  is very large for small p ,  and there 
is a large isotropic RW region with the eventual Rw-to-SAW crossover being virtually 
unobservable by Monte Carlo simulations unless the chain length is considerably 
extended for p < <  1. 

To illustrate our approach, let us first review the basic cell renormalisation method 
for the BSAW model. The statistical weight of a BSAW in each stage of Monte Carlo 
simulation is described by a probability p of taking a gauche step and 1 - p  of a trans 
step. Correspondingly, we assign the fugacity G to each gauche step and K to each 
trans step in the grand canonical ensemble of BSAW. If A(N, NG) is the number of 
N-step BSAW with N G  gauche steps, the generating function for BSAW is given by 

m N  

W (  K ,  G )  = A( N, NG) K N - N ~ G N ~ .  
N = O  NG=O 

This can be rewritten as 
m 

W ( K , G ) =  1 K N B  
N=O 

where 
N 

B(N, x)  = c A(N, N G ) x N ~ .  
NG=O 

(3) 

(4) 

Since the asymptotic behaviour of B(  N, x)  satisfies (see, e.g., [9]) 

B( N, 1) a p N ~ y - l  

B( N, 0) a 1 

( 5 a )  

( 5 6 )  

we expect a scaling form to result 

N=O 

with 

constant forx+O 
for x + CO. 

(7 )  

As the partition function is to be conserved under the renormalisation in usual 
critical phenomena (see, e.g., [ 101 for a review of renormalisation group theory), we 
aim to conserve the generalised form of this generating function, which will in principle 
depend on a large number of parameters taking into account all the correlations that 
will be introduced upon renormalisation while rescaling all lengths by a factor of, say, 
b. In the framework of our cell renormalisation, we try to approximate renormalisation 
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by equating only spanning contributions to W (  K ,  G )  within a cell of bd, which is the 
statistical weight carried over to the generating function after coarse graining, with 
renormalised fugacity K '  or G' depending on the renormalised step. The critical 
indices are then calculated from the eigenvalues of the recursion relations linearised 
about the critical fixed point in the same way as in usual critical phenomena. 

For the purpose of calculating the crossover exponent 4, we use a two-parameter 
renormalisation with the so-called corner rule [ 113 and renormalise all outgoing walks 
into a single step walk. To identify the first step in the cell, we must fix the incoming 
step, say, going into the cell through the lower-left corner along the horizontal direction. 
Walks that leave the cell by way of the right edge rescale to a single horizontal step 
which is a rescaled trans step, while walks leaving by the top edge rescale to a single 
gauche step (see figure 1). The recursion relations are obtained from these two different 
spanning contributions to W (  K ,  G) 

K ' =  a, , ,KmGn 

G' = b,,,,K "G" 

m,n 

m, n 

where a,,,"(b,,,") is the number of SAW leaving the cell along the horizontal (vertical) 
direction with m trans steps and n gauche steps. 

_kt G 

a 
L 

Figure 1. Two-parameter cell renormalisation of the biased self-avoiding walk is illustrated 
for a 2 x 2 cell on the square lattice. Walk configurations shown at top renormalise to the 
steps shown at bottom. The step coming into the cell is constrained to be horizontal. 
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For example, by counting all possible walks spanning the 2 x 2 square cell as shown 
in figure 2 we get the recursion relations 

K ’ =  K2+2KG2+G4 ( 9 a )  

G ’ =  GK + K 2 G +  G3+ G3K. (9b) 

We see that there exist two non-trivial fixed points at ( K * ,  G*) = (1.0, O.O), (0.466, 
0.466), the former being a one-dimensional fixed point and the latter being an isotropic 
SAW fixed point. Since we are interested in a crossover from a one-dimensional fixed 
point, we can linearise (9) near that point. Thus we obtain 

The eigenvalues of transformation matrix are = 2, which carry the crossover 
exponent of exactly one. By a similar method, critical index Y near the isotropic SAW 

fixed point can also be obtained resulting in the recovery of the result of earlier 
calculation [12] for isotropic SAW. The generalisation to a simple cubic or any 
hypercubic cell is straightforward. 

Generally, critical indices obtained by a small-cell renormalisation cannot be 
regarded as trustworthy by themselves. However, since much of the inherent approxi- 
mation involved in this method derives from the inter-cell effects which should diminish 
as the cell size is increased, often large-cell extrapolations [ 111 are employed to obtain 
more accurate estimates of critical exponents. For the present question of the crossover 
exponent, it turns out that the exact evaluation is possible for all cell sizes and in all 
dimensions as follows. Consider any hypercubic cell of size bd. The leading terms of 
recursion relations are given as 

K ’ =  K b +  bG2Kb-’ +. . . 
G ’ = G ( K b - ’ + K b + K b + ’ + .  . .+K2’-’)+G3(.  , .)+... . 

(1 la)  

(1lb) 

Linearising these near the one-dimensional fixed point at (1,0),  we get = b for all 
b. Thus, the inJinite cell limit of the crossover exponent is one. 

While the two-parameter renormalisation serves well in the above discussion, a 
simple scaling argument suggests that the rescaling of the stiff linear chain must also 
renormalise the extent of the excluded volume effect. Since this must be responsible 
for the differences exhibited between two- and three-dimensional stiff linear chains, 
we must also include the excluded volume parameter as the third parameter to be 

( U )  i b )  

Figure 2. Two different configurations of self-intersection are shown. Renormalised 
fugacities are ( a )  K ’ ( K ’ +  G’)(l -U’) and ( b )  G’(K’+ G’)( 1 -U’). The first step coming 
into the cell is constrained to be horizontal and the last step going out of the cell is chosen 
arbitrary. 
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renormalised if we were to be able to discuss the dimensional differences in the crossover 
behaviour. To incorporate this parameter we use the so-called Domb-Joyce model 
[ 131, in which a parameter U represents excluded volume, U = 1 corresponding to full 
excluded volume and U = 0, no excluded volume. To this effect, we extend the recent 
work [14] of Family and Gould which allows intersections of a flexible walk with 
itself, multiplying a weight ( 1  - U )  for each intersection. 

To find the recursion relations we must formulate some rule which corresponds to 
the spanning rule that was used above. In what follows, we will illustrate the results 
obtained using the following general rule. 

(i) For the rescaled gauche and trans steps, we use the same rule as before, except 
for the inclusion of intersection. Thus we get 

K ' =  u ~ ~ , ~ ( ~ - u ) ~ K ' " G "  (12a) 

G'= bkm,n(l - u ) ~ K " G "  (12b) 
k.m,n 

+m.n 

where and bk,m,n are the analogous quantities to those in ( s a )  and (8b), respec- 
tively, having k intersections. 

(ii) To renormalise U, we must consider walks which rescale to an intersecting walk 
on the renormalised cell. For this, we count walks that first leave the cell along a 
particular direction and then re-enter along a different direction to self-intersect at the 
origin. 

To obtain a concrete recursion formula, we have to make additional approximations 
since it is impossible to generate an infinite number of (self-intersecting) walks even 
on a small cell. We can, however, plausibly argue that keeping all possible outgoing 
and incoming walks of size up to the longest SAW (bd steps) on the cell should be 
sufficient for our purpose. Also, to obtain (8) and (12) we have fixed an incoming 
step in a certain direction since, by symmetry of the cell, the choice of such a step 
does not make any difference for the resulting recursion relations. However, for the 
renormalisation of U, a different choice of the direction of the incoming step would 
result in a different recursion relation since the renormalised outgoing step would be 
different. Therefore arbitrary choice of incoming step is not adequate for our current 
purpose. 

We first count each outgoing walk twice, considering it as if the walk with first step 
as gauche gives a different configuration from that with first step as trans. Applying 
this rule on the re-entering step as well, one complete walk intersecting at the origin 
results in four different configurations. This procedure leads to a recursion formula 
of the form 

( K ' + G ' ) * ( l - U ' ) = ( K +  G)' c ck,m+n(l-U)kKmGn (13a) 
k" 

where ck,m,n is the number of walks described above, having k intersections, m trans 
steps and n gauche steps excluding first and re-entering steps whose contributions are 
the prefactor (K  + G)'. 

Equation (13a) can also be obtained from the following rule with the incoming 
step fixed. Allow two types of intersecting configurations as shown in figure 2 and 
count the re-entering step in each case twice (once as trans and once as gauche equally). 
Walks leaving the cell along the right (top) edge and re-entering along the top (right) 
edge can be rescaled into the self-intersection of type figure 2(a) (figure 2(b)). Having 
these two types of configurations and taking the simple average with equal weighting, 
we obtain (13a). 
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We have counted, by computer, all possible walks of up to twelve steps (six outgoing 
and six re-entering) on the square lattice and sixteen steps on the simple cubic lattice, 
each of cell size b = 2, in order to obtain the recursion relations with these rules. As 
a result, we found two non-trivial isotropic SAW and RW fixed points ( K * ,  G*, U*) at 
(0.4656, 0.4656, l ) ,  (0.4597, 0.4597, 0) for the square lattice and at (0.2972, 0.2972, l ) ,  
(0.2911, 0.2911, 0) for the simple cubic lattice. In addition we found a line of fixed 
points between (1, 0, 1 )  and (1 ,0,0) .  Since, without allowing immediate returns (or 
allowing but counting them as gauche steps), there is no difference between the 
one-dimensional RW and SAW, every point on the line connecting these two points 
describes the identical one-dimensional behaviour. 

While the full flow diagram can be drawn in the three-dimensional parameter space, 
it is difficult to visualise three-dimensional flows on a piece of paper. Also since we 
are interested in how the chain crosses over from its one-dimensional limit to the 
isotropic SAW or RW limit, it is natural to look at the flows in the plane which contains 
these fixed points. In figures 3(a)  and 3 ( b )  we see clear differences between two and 
three dimensions. In three dimensions there is a bifurcation line connecting a point 

tanh G tonh G 

Line of fixed points 

(a1 

me o f  f ixed points 

(b) 

Figure 3. Flow diagram from a three-parameter cell renormalisation of the biased self- 
avoiding walk is illustrated for a 2 x 2  cell on ( a )  the square lattice and ( b )  the simple 
cubic lattice. (See text for rules used.) At top, isotropic self-avoiding walk (SAW) and 
isotropic random walk (RW)  fixed points are marked and flows between fixed points are 
indicated with arrowed full lines. At bottom, the local directions of flow for the points on 
the plane as shown at top are indicated by arrows. 
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with U > 0 and the flexible R W  fixed point. Close to this line, the flows are first to the 
R W  fixed point and then to the SAW fixed point, showing that the chain will eventually 
cross over to the SAW limit. In two dimensions, however, this line lies in the plane of 
U = O  and for any u > O  flows are directly to the SAW fixed point. This difference is 
consistent with our earlier observation based on Monte Carlo simulations. 

In the above discussions we have presented one of the most reasonable ways of 
weighting among many possible ways for the first and re-entering steps. We have, 
however, also examined other types of weighting, some of which we introduce in the 
following. 

(A) The first step is weighted as gauche (2d-2)-times more than as trans. This 
is because there are (2d  - 2) different ways of having the incoming step in a different 
direction from the first step in the cell while there is only one way in the same direction. 
Applying the same rule on the re-entering step as well, we obtain a recursion relation 
for U of the form 

( K ' +  ( 2 d  -2)G')*( 1 - U ' )  = ( K  + (2d  - 2)G)* c Ck,m,n( 1 - u)kKmGn ( 1 3 6 )  
k,m,n 

where Ck,m,n is the same quantity as in (13a). 
( B )  With the first step fixed, taking either one of the two loop configurations shown 

in figure 2, and counting the re-entering step as gauche and trans once each equally, 
we obtain a corresponding recursion formula. 

(C) With the first step.fixed along the horizontal direction, we count the re-entering 
step gauche if all other steps are trans, and otherwise as trans. This is because for 
G = 0, the chain is strictly one dimensional and a loop configuration is not possible 
and also because, for a stiff chain, trans steps have much higher statistical weight than 
gauche. In this case, the recursion relation takes the form of 

K'G'( 1 - U ' )  =  CL,,^( 1 - u ) ~ K " G "  
k m , n  

where  CL,,^ is the number of walks described above. 
Counting all walks of up to twelve steps for two dimensions and sixteen steps for 

three dimensions, appropriate recursion relations have been obtained for these and 
other possible rules and the fixed points and the flows have been calculated as usual. 
We find unexpectedly that the flow diagrams are quite sensitive to the weight of the 
first step, as follows. 

Rule (A) does not show any dimensional difference and all flows are from the 
one-dimensional fixed points to the SAW fixed point without showing R W  behaviour. 
However, we can argue that by this rule the same configuration with the first step as 
gauche has been counted more than necessary resulting in a chain more likely to be 
flexible. In rule (B)  in three dimensions, missing some of the possible loop configur- 
ations results in the bifurcation line moving closer to the U = 0 plane. The flow diagram 
still shows a R W  behaviour, though weaker than figure 3 ( b ) ,  and then finally flows are 
to the SAW fixed point. Finally, rule (C) produces, although there is no rigorous 
justification of weighting for the first step, the most clear-cut dimensional difference 
in the crossover behaviour. There is no one-dimensional line of fixed points, but rather 
the two fixed points are different in this case. The bifurcation line is strictly from the 
one-dimensional SAW fixed point to the R W  fixed point and all flows from the one- 
dimensional limit are first to the R W  fixed point and finally to the SAW fixed point in 
three dimensions. In any of these cases, the immediate return, allowed and counted 
as a gauche step, does not affect the final result. 
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We have presented a simple cell renormalisation scheme for the BSAW model, and 
showed that ( i )  the stiff -to-flexible crossover exponent is exactly one in all dimensions 
and for all cell sizes, and that (ii) the Rw-to-sAw crossover behaviour is clearly different 
in two and three dimensions. While somewhat different results have been obtained 
depending on how the first step is weighted, the most acceptable rule produces clearly 
different crossover behaviour in the limit N + 00 in two and three dimensions supporting 
our earlier observations. 

We are grateful to Kurt Kremer and B Derrida for discussions. This work was supported 
in part by grants from the Petroleum Research Fund of the American Chemical Society 
and from Purdue Research Foundation. 

References 

[ l ]  Kratky 0 and Porod G 1949 Rec. Trav. Chim. 68 1106 
[2] Landau L D and Lifshitz E M 1980 Starisrical Physics (Reading, MA: Addison-Wesley) 
[3] Schaefer D W, Joanny J F and Pincus P 1980 Macromol. 13 1280 
[4] Ausserre D, Hervet H and Rondelez F 1985 J. Physique Lett. 46 L929 
[SI Halley J W, Nakanishi H and Sundararajan R 1985 Phys. Rev. B 31 293 
[6] Lee S B and Nakanishi H 1986 Phys. Rev. B 32 1953 
[7] Petscheck R private communication 
[8] Nakanishi H Preprint 
[9] de  Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca: Cornell University Press) 

[ lo]  Fisher M E 1974 Rev. Mod. Phys. 46 597 

Ell] Stanley H E, Reynolds P J, Redner S and Family F 1982 Real Space Renormalization ed T Burkhardt 
Ma S K 1973 Rev. Mod. Phys. 45 589 

and J M J van Leeuwen (Berlin: Springer) 
Redner S and Reynolds P J 1981 J. Phys. A:  Math. Gen. 14 2679 

Family F 1981 J. Physique 42 189 
[12] de Queiroz S L A and Chaves C M 1980 Z. Phys. B 40 99 

[13] Domb C and Joyce G S 1972 1. Phys. C: Solid Stale Phys. 5 956 
[14] Family F and Gould H 1984 J. Chem. Phys. 80 3892 

Family F 1984 Random Walks and Their Applications in Physical and Biological Sciences ed M F 
Shlesinger and B J West (New York: American Institute of Physics) p 34 


